ELADUR - CUSCINI QUADRANGOLARI PIENI E FORATI

ELADUR RECTANGULAR BARS

ELADUR 42 e 167

Sezione	Cuscini	pieni VVK	Cuscini forati VHK			
a x b	I = 250 mm	l = 1000 mm	l = 250 mm	l = 1000 mm		
25 x 25	•	•	*	•		
50 x 50	•	•	•	•		
50 x 75	•	•	•	•		
50 x 100	•	•	•	•		
75 x 75	•	•	•	•		
75 x 100	•		•			
75 x 125	•		*			
75 x 150	•		•			
100 x 100	•		*			
100 x 150	•		•			
125 x 125	•		•			
100 x 200	•		•			
100 x 230	•		•			
125 x 275	•		•			

ESEMPIO DI ORDINAZIONE VHK 167 - 50x75x250

ORDERING EXAMPLE VHK 167 - 50x75x250

ELADUR

1 - **ELADUR** (Poliuretano - elastomero a base di polietere) ELADUR è fornibile in sei differenti durezze Shore per cui si hanno le seguenti sei qualità:

Piccolesfumature divergenti di colore non sono sempre evitabili.

ELADUR	33	42	100	167	200	315
Colore	giallo	rosso trasparente	verde	bruno chiaro	blu	beige
Shore A	65±5	80±3	90±2	95±1	97±0,5	-
Shore D	-	-	40±3	50±3	60±3	75±3
Elasticità	40%	35%	30%	25%	15%	5%

ELADUR è caratterizzata da alta resistenza allo strappo, elasticità, buone caratteristiche termiche, stabilità all'usura e resistenza agli olii ed ai solventi.

DOVE SI IMPIEGA ELADUR?

ELADUR si impiega in scala sempre crescente nella costruzione delle parti elastiche di utensili, apparecchi, congegni, macchine, veicoli ed aereomobili. Le barre elastiche, gli anelli, gli ammortizzatori, gli estrattori, ed i respingenti di ELADUR hanno pienamente corrisposto anche nelle più difficili condizioni d'impiego, superando elevati sbalzi di carico senza mostrare segni d'affaticamento.

Grazie all'assortimento, che offre differenti durezze Shore, è possibile adeguare la freccia e la potenza dell'organo elastico alle specifiche necessità dell' applicazione. ELADUR presenta inoltre vantaggi anche dal lato ecologico in quanto riduce la rumorosità delle parti in movimento.

Un vasto campo d'applicazione delle matrici ELADUR si ha nella piegatura, foggiatura e bombatura delle lamiere; la matrice, bloccata entro un contenitore, agisce come un liquido incomprimibile e per effetto delle pressioni esterne, essa sospinge il pezzo di lamiera uniformemente entro tutte le cavità del punzone d'acciaio. Ultimata l'operazione di foggiatura, il pezzo è espulso automaticamente. Nella bombatura e nella svasatura con ELADUR si sfruttano le pressioni trasversali che si generano nel corpo elastico per effetto della compressione. In tal modo si possono bombare facilmente e rapidamente anche pezzi complicati. Per tranciate e foggiare serie limitate di pezzi, per produzioni eccezzionali e per controlli sui pezzi tranciati, servono ottimamente i nostri utensili assemblati con i quali è possibile tranciare e foggiare contemporaneamente. Per passare da figura ad altra basta cambiare lo stampo inferiore d'acciaio. Molte industrie preferiscono ricorrere all'ELADUR per le seguenti applicazioni: idrocicloni, listelli elastici dentellati, membrane, segmenti per pompe, manicotti per l'industria petrolchimica, elementi meccanici per le industrie tessili ed elettromeccaniche, anelli di tenuta, parti di attacchi per sci, centrifughe per sostanze corrosive, ecc. Noi siamo in grado di fornire tutti questi particolari ed altri ancora su disegno del Cliente.

L'applicazione delle matrici e degli utensili assemblati ELADUR elimina la matrice d'acciaio, che è invece indispensabile nello stampaggio convenzionale. Dato che la costruzione di questo utensile è costosa e richiede del tempo, ELADUR permette notevoli economie.

CARATTERISTICHE FISICHE GENERALI DI ELADUR

ELADUR		33	3	4:	2	10	0	16	67	20	00	31	15	
Colore		giallo		rosso		verde		bruno chiaro		blu		beige		
Shore A		65±5		80±3		90±2		95±1		97±0,5		_		
Shore D		-		-		40±3		50±3		60±3		75±3		
Elasticità	%	40)	35		30		25		15		5	5	
Carico (per 100% di compress.)	N/cm²	21	0	280		760		1240		2070		2960		
Tendenza al cedimento	%	6		6	6		8		8		5		-	
Peso specifico	g/cm³	1,0	8	1,08		1,10		1,13		1,18		1,22		
Carico di rottura	N/cm² ca.	190	00	2100		3150		4300		5850		7750		
Allungamento	%	90	0	80	00	500		450		3	15	270		
Indice di usura DIN 53516	mm² ca.	45	5	4	8	56		64		7	6	93		
Resilienza	N/cm ca.	85	5	8	5	13	5	27	70	24	10	21	10	
Deformaz. residua da pressione (carico iniziale 25%; t=24 h a 70°C)	%	35		35		38		40		40		-		
Modulo E (sez. Ø) elasticità	N/cm²	170	00	2300		4900		7700		16000		45000		
Coeff. attrito: acciaio - ELADUR		_		_		0,55		0,5		0,4		0,2		
Conducibilità termica lineare	W/mk	0,145		0,137		0,132		0,124		0,134		0,108		
Coeff. allungamento lineare														
	-350°C	2,43x	(10⁴	2,28	x10⁴	2,57	<10 ⁻⁴	2,28	x10⁴	1,94	x10⁴	1,42	x10⁴	
	025°C	1,89x	(10⁴	1,92	x10 ⁻⁴	1,82	∢ 10⁴	1,60	x10⁴	1,49	x10⁴	1,46	x10⁴	
	25100°C	2,07x	(10 ⁻⁴	1,98	x10⁴	1,71	<10⁴	1,60	x10⁴	1,55	x10⁴	1,35	x10⁴	
	100150°C	1,83x	(10⁴	1,74	x10 ⁻⁴	1,62	√ 10-⁴	1,24	x10⁴	1,33	x10⁴	1,94	x10⁴	
Caratteristiche elettriche		0,1kHz 1	00kHz	0,1kHz	100kHz	0,1kHz	100kHz	0,1kHz	100kHz	0,1kHz	100kHz	0,1kHz	100kHz	
Fattore rendimento %	a 25°C	8,20	8,15	5,15	5,55	4,70	5,92	7,25	4,35	7,35	3,45	5,80	2,460	
	a 70°C	13,90	6,55	10,56	4,15	9,45	4,15	6,65	4,75	6,90	3,40	7,10	3,50	
	a 100°C	9,60	3,60	17,35	4,55	12,60	3,90	8,75	4,00	8,55	4,15	8,65	3,35	
Costante dielettrica (SIC)	a 25°C	8,20	6,25	9,74	7,79	9,37	7,78	9,25	7,58	7,88	6,65	7,58	6,40	
	a 70°C	8,40	7,21	11,86	10,05	11,05	9,62	11,65		10,34	8,52	9,68	8,04	
	a 100°C	12,70		12,49		11,48		12,19		11,11	•	10,50		
Resistività superficiale Ohm/cm	a 25°C	4,8 x		5,0 x		4,8 x			10 ¹²		10 ¹²	2,0 x		
	a 70°C	1,4 x		2,8 x 10 ¹⁰		3,8 x 10 ¹⁰		2,0 x 10 ¹¹		8,2 x 10 ¹¹		3,2 x 10 ¹²		
	a 100°C	1,3 x 10 ¹⁰		1,7 x 10 ¹⁰		2,3 x 10 ¹⁰		1,1 x 10 ¹¹		3,6 x 10 ¹¹		1,2 x 10 ¹²		
Rigidità dialettrica	V/mm	· ·		17700		· '						17700		
		73=nessuna tr		1		ı		raccia scorrim.				1		

ISTRUZIONE PER LA LAVORAZIONE DI ELADUR

ELADUR	33	42	100	167	200	315		
Taglia alla cesola (spessore massimo)	f	ino a 20 mn	n fino a 10 mm					
Segaggio (sega a nastro 8 denti per 1")	500 ı	m/min	365 m/min					
Foratura utensili d'acciaio rapido			20 m/min					
punta 90°	-	30 m/min						
Tornitura (ang. spoglia sup. y=10-25°		280 m/min	045					
ang. spoglia ant. ∞=12°)	_	y=25°	245 m/min					
Fresatura	-							
Filettatura maschi in acciaio rapido	-	-	da M 8	da M 6	da M 5	da M 4		
Rettifica		V>30m/s (abrasivo:corindone normale 80 j mf Ke)						

N.B. - Tutti gli utensili devono essere bene affilati.

RESISTENZA CHIMICA DI ELADUR

Acetato d'etile	X	Cloruro di magnesio, soluzioni	+	JP-4/JP-5	X
Acetone	X	Cloruro di rame, soluzioni	+	Mercurio	+
Acido acetico, 20%	-	Cloruro di sodio	+	Monossido di carbonio	+
Acido borico, soluzioni	+	Cyclohexan	+	Nafta	-
Acido cloridrico, 20%	-	Diossido di carbonio	+	Naftalina	-
Acido nitrico, 10%	X	DOWTHERM A	-	n-Hexan (50°C)	-
Acido oleico	-	Etere isopropilico	-	Oli combustibili	-
Acido palmitico	+	Fenolo	X	Oli idraulici	-
Acido stearico	+	Fosfato di tricresile	-	Oli lubrificanti	-
Acido tannico, 10%	+	Fosfato trisodico, soluzioni	+	Oli minerali	+
Acido tartarico	+	FREON 11	-	Olio ASTM N. 1 (70°C)	+
Acqua (50°C)	+	FREON 12 (54°C)	+	Olio ASTM n. 3 (70°C)	-
Alcool etilico	X	FREON 22	X	Olio di lino	-
Alool metilico	X	FREON 113	+	Olio di ricino	+
ASTM Reference Fuel A	+	Glicerina	+	Olio di semi di cotone	+
ASTM Reference Fuel B (50°C)	-	Glicolo d'etilene	-	Olio di semi di soia	-
ASTM Reference Fuel C	X	Idrogeno	+	Olio SAE N. 10 (70°C)	+
Benzina	-	Idrossido d'ammonio, soluzioni	+	Percloroetilene	X
Benzolo	X	Idrossido di bario, soluzioni	+	SKYDROL 500	X
Bisolfato di calcio, soluzioni	+	Idrossido di calcio, soluzioni	+	Solfato di rame, soluzioni	+
Borace, soluzioni	+	Idrossido di magnesio, soluzioni	+	Tetracloruro di carbonio	X
Butano	+	Idrossido di potassio, soluzion	+	Toluolo	X
Cherosene	X	Idrossido di sodio, 46,5%	+	Trementina	X
Chetone metil-etilico	X	Isoottano (70°C)	-	Tricloroetilene	X

Spiegazioni dei segni: + nessun attacco - leggero x attacco forte I suddetti dati, salvo indicazione contraria, sono stati rilevati a normale temperatura d'ambiente.

